Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Visionary's Take: An Engineering Journey into the Marketplace (Part 2 of 3)

2017-10-12
We're working to solve the STEM crisis and building the next generation of engineers and scientists with our Kindergarten-College programs supported by the SAE Foundation: - A World In Motion (AWIM) Kindergarten-8 - Collegiate Design Series (CDS) College Help us inspire curiosity in STEM: find out more at saefoundation.org today.
Video

Spotlight on Design Insight: Sensors: Noise Avoidance and Cable Manufacturing

2015-05-07
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Extreme environment sensors require extreme environment cables that can reliably perform in temperatures up to 2300° F, withstand intense vibration, and have extraordinary strength. In the episode “Sensors: Noise Avoidance and Cable Manufacturing” (8:53), an engineer at Meggitt Sensing Systems demonstrates the intricate process of developing cable for sensors used in these situations.
Video

Spotlight on Design: Counterfeit Electronic Parts: Supply Chains at Risk

2015-04-15
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Just how prevalent is the problem of counterfeit electronic parts? What are the consequences of using sub-par components in safety or mission critical systems? The Federal Aviation Administration estimates that 2% of the 26 million airline parts installed each year are counterfeit, accounting for more than 520,000 units, maybe more.
Video

Transmissions in Aircraft on Unique Path wires: An Aeronautic European Research Project

2012-03-21
TAUPE is a collaborative research project co-funded by the European Commission in the framework of the Seventh Framework Programme (FP7). It addresses the aeronautic sector and is composed of 17 partners from 6 European countries. The project lasts 3,5 years (September 2008 ? February 2012), is led by Safran Engineering Services (Labinal, SAFRAN Group) and has a budget of 5.5M?. The project aims to simplify the electrical architecture of aircraft and to reduce the length and mass of cabling by introducing PLC (PowerLine Communication) or PoD (Power over Data) technologies inside the aircraft. Both technologies essentially aim to supply power and data over the same cable.
Video

Monitoring the Progression of Micro-Pitting in Spur Geared Transmission Systems Using Online Health Monitoring Techniques

2012-03-16
Micro-pitting is a fatigue effect that occurs in geared transmission systems due to high contact stress, and monitoring its progression is vital to prevent the eventual failure of the tooth flank. Parameter signature analysis has been successfully used to monitor bending fatigue failure and advanced phases of gear surface fatigue failure such as macro-pitting and scuffing. However, due to modern improvements in steel production the main cause of gear contact fatigue failure can be attributed to surface micro-pitting rather than sub-surface phenomena. Responding to the consequent demand to detect and monitor the progression of micro-pitting, this study experimentally evaluated the development of micro-pitting in spur gears using vibration and oil debris analysis. The paper presents the development of an online health monitoring system for use with back-to-back gear test rigs.
Video

High Volume Production of Fiber Reinforced Thermoplastic Parts

2012-03-23
Presented by: Dan Ott Web Industries Director, Business Development, Advanced Composites Market With the growth of Fiber Placement technology as a preferred automation technology in aerospace manufacturing and the rapid growth of new production line installations, it is crucial to provide material in a form which meets all necessary specifications and supports the optimum productivity available from this major capital investment made by the producer of the parts. Achieving these goals happnes when the part designer, AFP machine builder, and the slit tape producer design the best process and format which provides smooth, efficient and rapid delivery of the prepreg slit tape to the Fiber Placement laydown head. Tape size (width), slit width tolerance, spool shape and size, density of prepreg on the spool, spool change-over and handling processes all play a factor in productivity, and creating (or inhibiting) the best ROI on a full-scale AFP production line.
Video

Prepreg Slit Tape and Fiber Placement: Developing High Performance Material Delivery Systems for High-Output AFP Lines

2012-03-23
There are worldwide activities in developing guidelines and standards for fiber optic sensors. Fiber optic sensors (FOS) are increasingly demanded for structural health monitoring purposes and for measurement of physical and chemical quantities because of their specific features. However, they are not yet widely established for practical use due to a lack of guidelines and confirmed standards. Therefore, there are few groups worldwide which are very active in developing standards for use of FOS in different fields, particularly driven from aircraft industry, oil industry or the necessity to provide sensor systems for health monitoring of structures with a certain level of risk. The benefits of guidelines and/or standards on the way to well-validated and well-specified sensor systems will be presented by means of related examples. The presentation will also give an overview on the state-of-the-art and most relevant activities. Results achieved are discussed.
Video

Orbital Drilling Machine for One Way Assembly in Hard Materials

2012-03-23
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons. The main solution that was implemented meeting several objectives was the development of orbital drilling technology in hard metal stacks.
Video

Detecting Damage and Damage Location on Large Composite Parts using RFID Technology

2012-03-16
Probabilistic methods are used in calculating composite part design factors for, and are intended to conservatively compensate for worst case impact to composite parts used on space and aerospace vehicles. The current method to investigate impact damage of composite parts is visual based upon observation of an indentation. A more reliable and accurate determinant of impact damage is to measure impact energy. RF impact sensors can be used to gather data to establish an impact damage benchmark for deterministic design criteria that will reduce material applied to composite parts to compensate for uncertainties resulting from observed impact damage. Once the benchmark has been established, RF impact sensors will be applied to composite parts throughout their life-cycle to alert and identify the location of impact damage that exceeds the maximum established benchmark for impact.
Video

A350XWB Fiber Placement Spars; From R&D Conception Phase to Serial Production

2012-03-23
At the end of 2006, two MTorres engineers visited the plant of Airbus UK in Filton receiving a new challenge: Find a more efficient way to manufacture Carbon Fiber Spars for the new A350 program. The range of possibilities were wide: manual infusion methods (RTM, RIM, RFI...), Automatic Taping & hot forming, or the new technology proposed, Fiberplacement or AFP. Two (2) options were considered: hot forming+ATL and AFP (both using prepeg technology.) The usage of a flat lay-up + hot forming technology was used in the only Airbus program that used carbon fiber for the wing manufacturing so far, the A400M. The expected greater complexity of A350 spar created doubts on the feasibility of using the above process, while the AFP technology, consisting of laying up directly on the final shape of the spar, also raised questions of technical feasibility, apart from the economic ?business case?, in case the productivity of the cell was not big enough. A ?Spar team?
Video

Vertical Picture-Frame Wing Jig Structure Design with an Eye to Foundation Loading

2012-03-14
The foundation of many production aircraft assembly facilities is a more dynamic and unpredictable quantity than we would sometimes care to admit. Any tooling structures constructed on these floors, no matter how thoroughly analyzed or well understood, are at the mercy of settling and shifting concrete, which can cause very lengthy and costly periodic re-certification and adjustment procedures. It is with this in mind, then, that we explore the design possibilities for one such structure to be built in Belfast, North Ireland for the assembly of the Shorts C-Series aircraft wings. We evaluate the peak floor pressure, weight, gravity deflection, drilling deflection, and thermal deflection of four promising structures and discover that carefully designed pivot points and tension members can offer significant benefits in some areas.
Video

Automating AFP Tuning Using a Laser Sensor

2012-03-22
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, ?on board? maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Video

Optimization of Rule-Based Control Strategy for a Hydraulic-Electric Hybrid Light Urban Vehicle Based on Dynamic Programming

2012-05-29
Plugin Hybrid Electric Vehicles (PHEV) have a large battery which can be used for electric only powertrain operation. The control system in a PHEV must decide how to spend the energy stored in the battery. In this paper, we will present a prototype implementation of a PHEV control system which saves energy for electric operation in pre-defined geographic areas, so called Green Zones. The approach determines where the driver will be going and then compares the route to a database of predefined Green Zones. The control system then reserves enough energy to be able to drive the Green Zone sections in electric only mode. Finally, the powertrain operation is modified once the vehicle enters the Green Zone to ensure engine operation is limited. Data will be presented from a prototype implementation in a Ford Escape PHEV Presenter Johannes Kristinsson
Video

Development of High Strength Polymer Based Bearing for Automotive Parts under Boundary Lubrication

2012-05-23
Composite bearings of PTFE as the base material have been widely used for automotive parts. However, in recent years, due to downsizing, faster sliding speeds, and tendency to increase the bearing load with high performance, particularly for boundary lubrication conditions, the PTFE-based composite bearing is often worn, making it difficult to apply to some applications. A high strength polymer was selected as an alternative to PTFE base material, and the mechanical properties and performance in a start-stop test, reciprocating sliding test and seizure test were evaluated. Focusing on the characteristics of high strength, by applying a PEEK resin, in each evaluation, it was confirmed that superior performance was achieved compared with a conventional PTFE based composite bearing. Presenter Yohei Takada, Daido Metal Co., Ltd.
Video

Component Interoperability For Automotive Safety Issues

2012-05-22
There is a need to accelerate the automotive industry's alert notification and distribution process for quality, reliability, counterfeit, and safety issues that reside in specific electronic components or circuit card assemblies. This paper describes an alert procedure for an entire supply chain that can improve operational efficiency and reduce the costs associated with responding to and resolving those issues. Interoperability: Ability to work with each other. It is frequently unnecessary for separate resources to know the details of how they each work. But they need to have enough common ground to reliably exchange messages quickly without error or misunderstanding. Presenter William Crowley, QTEC Inc.
Video

Eco+ Solutions in High Performance Plastics from DSM for Automotive.

2012-05-22
In this paper we present the results of full-scale chassis dynamometer testing of two hybrid transit bus configurations, parallel and series and, in addition, quantify the impact of air conditioning. We also study the impact of using an electrically controlled cooling fan. The main trend that is noted, and perhaps expected, is that a significant fuel penalty is encountered during operation with air conditioning, ranging from 17-27% for the four buses considered. The testing shows that the series hybrid architecture is more efficient than the parallel hybrid in improving fuel economy during urban, low speed stop and go transit bus applications. In addition, smart cooling systems, such as the electrically controlled cooling fan can show a fuel economy benefit especially during high AC (or other increased engine load) conditions.
Video

Polycarbonate Glazing - Accelerated Wiper Testing, Surface Characterization and Comparison with On-Road Fleet Data

2012-05-23
Exatec� PC glazing technology team, has developed advanced weathering and abrasion resistant coatings technology that can be applied to protect polycarbonate. It is of particular interest to quantify and understand the factors that determine the surface abrasion performance of coated PC in rear window and backlight applications that have a wiper system. In the present study we describe Exatec's lab scale wiper testing equipment and test protocols. We also describe adaptation of optical imaging system to measure contrast and nano-profiling using nano-indenter, as post wiper surface characterization methods. These methods are more sensitive to fine scratches on glazing surface than standard haze measurement and mechanical profilometry. Three coating systems were investigated; Siloxane wetcoat (A), Siloxane wetcoat (B), and Siloxane wetcoat (B) plus plasma coat (Exatec� E900 coating). The performance comparisons were made using all these surface characterization methods.
Collection

Lighting Technology and Human Factors, 2005

2010-09-15
This technical paper collection contains 29 papers covering lighting technologies. Topics covered include improving lower beam visibility, LED headlamp design, mirror mounted turn signals, condensation in headlamps, headlight glare exposure and recovery, glare on driving behavior, and more.
Collection

Automotive Lighting Technology and Human Factors in Driver Vision and Lighting, 2007

2010-09-23
The 28 papers in this technical paper collection discuss automotive lighting product innovation and improvement; engineering analysis: new light sources evaluations; advanced lighting technologies: LED applications; benefits of the advanced road illumination; and visual aspects of the lighting systems and how drivers are effected by the inputs of these systems.
X